

Graphics window comes up but no graphics.
Using scilab 6.1.1 on both Linux Mint 20.3 and Ubuntu 20.4. Both have same problem. Exactly the same programs with exactly same plot calls work fine on older scilab 5.3 and Ububtu 16.1.
Scilab


Can you share your program. Then I can try to suggest you.


// Beam on an Elastic foundation.
clear
// Example: Aluminum I-beam sitting on
// loose sand
E=72E9; // in N/m^2
J=2.45E-6; // in m^4
b=0.075; // width of beam in m
k0=5E6; // Modulus of foundation in N/m^3
k=b*k0; // in N/m^2
L=6.8; // in m
P0=1E3; // in N
ke=k/(E*J);
N=20;
dx=L/N;
dx2=dx*dx;
for i=1:N-1
x(i)=i*dx;
P(i)=P0*(0.25-(x(i)/L-0.5)^2); // The loading function
end
x=[0;x;L];
// Matrix A setup
A=0;
A(1,1)=-2;
A(1,2)=1;
for i=2:N-2
A(i,i-1)=1;
A(i,i)=-2;
A(i,i+1)=1;
end
A(N-1,N-2)=1;
A(N-1,N-1)=-2;
// Matrix B setup
B=[A,-dx2*eye(N-1,N-1);dx2*ke*eye(N-1,N-1),A];
// RHS vector R setup
for i=1:N-1
R(i)=0;
end
R=[R;dx2*P/(E*J)];
// Solve system BW=R
W=B\R;
// Augment of output vector W to include endvalues
for i=1:N-1
y(i)=W(i);
z(i)=W(i+N-1);
end
y=[0;y;0];
z=[0;z;0];
// plot output
//plot(x,y,"*",x,z,"+")
// Let's compare this to the beam without the foundation
// All we need to do is set ke=0 and recalculate the matrix B
// Designate the no foundation case as y0 and z0 for y and z
ke=0;
B=[A,-dx2*eye(N-1,N-1);dx2*ke*eye(N-1,N-1),A];
W=B\R;
for i=1:N-1
y0(i)=W(i);
z0(i)=W(i+N-1);
end
y0=[0;y0;0]/100;
z0=[0;z0;0]/100;
plot(x,y,"*",x,z,"+",x,y0,"^",x,z0,"o")
clear
// Example: Aluminum I-beam sitting on
// loose sand
E=72E9; // in N/m^2
J=2.45E-6; // in m^4
b=0.075; // width of beam in m
k0=5E6; // Modulus of foundation in N/m^3
k=b*k0; // in N/m^2
L=6.8; // in m
P0=1E3; // in N
ke=k/(E*J);
N=20;
dx=L/N;
dx2=dx*dx;
for i=1:N-1
x(i)=i*dx;
P(i)=P0*(0.25-(x(i)/L-0.5)^2); // The loading function
end
x=[0;x;L];
// Matrix A setup
A=0;
A(1,1)=-2;
A(1,2)=1;
for i=2:N-2
A(i,i-1)=1;
A(i,i)=-2;
A(i,i+1)=1;
end
A(N-1,N-2)=1;
A(N-1,N-1)=-2;
// Matrix B setup
B=[A,-dx2*eye(N-1,N-1);dx2*ke*eye(N-1,N-1),A];
// RHS vector R setup
for i=1:N-1
R(i)=0;
end
R=[R;dx2*P/(E*J)];
// Solve system BW=R
W=B\R;
// Augment of output vector W to include endvalues
for i=1:N-1
y(i)=W(i);
z(i)=W(i+N-1);
end
y=[0;y;0];
z=[0;z;0];
// plot output
//plot(x,y,"*",x,z,"+")
// Let's compare this to the beam without the foundation
// All we need to do is set ke=0 and recalculate the matrix B
// Designate the no foundation case as y0 and z0 for y and z
ke=0;
B=[A,-dx2*eye(N-1,N-1);dx2*ke*eye(N-1,N-1),A];
W=B\R;
for i=1:N-1
y0(i)=W(i);
z0(i)=W(i+N-1);
end
y0=[0;y0;0]/100;
z0=[0;z0;0]/100;
plot(x,y,"*",x,z,"+",x,y0,"^",x,z0,"o")
Login to add comment