0
How to resolve a system of edo

Hi,

how we can resolve the following system of edo with Scilab? Please
\begin{align*}
\dfrac{du}{dt} &= -a_1 u v_1 -a_2 u v_2, \\
\dfrac{\partial i_1}{\partial t}&= a_1 u v_1 - \beta_1 i_1, \\
\dfrac{\partial i_2}{\partial t}&= a_2 u v_2 -\beta_2 i_2, \\
\dfrac{\partial v_1}{\partial t}&= b_1 i_1 - \sigma_1 v_1, \\
\dfrac{\partial v_2}{\partial t}&= \epsilon i_1 + b_2 i_2 - \sigma_2 v_2,

\end{align*}

where $a_1, a_2, b_1, b_2, \beta_1, \beta_2, \sigma_1, \sigma_2$ are real constant, $t \in [0,200]$

Best regards


Scilab 15-08-21, 6:15 p.m. lili2021

Log-in to answer to this question.